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What Do We Know about Self-Similarity 
in Fluid Turbulence? 
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The evidence is reviewed on the statistical behavior of the small-scale fluc- 
tuations in high-Reynolds-number fluid turbulence. The qualitative phenomeno- 
logical information is summarized and the predictions of the 1941 Kolmogorov 
theory are reviewed. Then direct numerical simulation and its role in suggesting 
dynamical mechanisms are briefly discussed. Finally, the evidence on the multi- 
fractal structure of the dissipation field is reviewed. It is concluded that the 
experimental evidence for some kind of dynamical self-similarity is strong, but 
that there has been essentially no progress in fundamental theoretical 
understanding of the underlying mechanisms. 
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multifractal structure. 

Big whorls have little whorls 
which feed on their velocity. 
Little whorls have lesser whorls 
and so on to viscosity. 
(in the molecular sense) 

L. F. Richardson, 1922 

1. I N T R O D U C T I O N  

Richardson's famous ditty, or the collected works of G. I. Taylor from as 
early as 1915, give an essentially correct qualitative picture of the dynamics 
of strongly turbulent flow. Kolmogorov's 1941 theory (1~ added some 
dynamical content to this picture. Its basic assumption is that e, the 
average rate of energy dissipation per unit mass, is independent of viscosity 
in the limit of zero viscosity. This idea is central to all engineering modeling 
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of turbulence, since it allows the large-scale properties of the flow to be 
computed approximately without a detailed understanding of the small- 
scale turbulent fluctuations. This same idea also has deep mathematical 
implications about the zero-viscosity limit of the Navier-Stokes equations. 
In this paper I review what we know firmly, which is very little. I then 
review the phenomenological evidence for some kind of self-similarity 
in turbulence. I briefly summarize some clues from direct numerical 
simulation, and very briefly discuss the role of statistical theories. I con- 
clude by suggesting that dynamical self-similarity and some kind of cascade 
mechanism are probably contained within the Navier-Stokes equations, 
but that fundamental theory has so far made little progress in support of 
this conclusion. 

2. W H A T  IS THE  P R O B L E M ?  

If thermal effects can be neglected, and pressure-induced density 
changes are small, a fluid flow can be considered incompressible. Consider, 
for example, the flow past a cylinder. The free stream velocty far upstream 
is U, and the diameter of the cylinder is L. The fluid is assumed to be 
Newtonian, which is an excellent approximation for ordinary fluids such as 
air or water. The only relevant molecular parameter is the kinematic 
viscosity v, which serves as a diffusion coefficient for transverse momentum. 
For a given flow geometry, the flow is completely characterized by a single 
dimensionless parameter, 

R e  = UL/v (1) 

known as the Reynolds number. This parameter is the inverse of an 
appropriate dimensionless viscosity. When the Reynolds number is large, 
the flow is turbulent. The wake behind the cylinder exhibits a flow field 
which is chaotic in both space and time, but whose averages and statistical 
properties are stable. It is these averages and statistical properties that we 
want to understand. The problem can be posed in a similar way for a high- 
Reynolds-number jet or for the turbulent boundary layer over a flat 
surface. An initial qualitative understanding of turbulent flow fields is best 
obtained from flow visualizations. An excellent source is the book An 
Album of Fluid Motion assembled by Van Dyke/2) The reader is 
encouraged to browse through Chapter 6 on turbulence. 

3. W H A T ' D O  W E  K N O W  FOR SURE? 

In a gas, the relevant molecular length scale is the collision mean free 
path. In a liquid it is the mean distance between molecules. At the 
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molecular level, gases and liquids have little in common. Often, however, 
fluid motions occur only on length scales large compared to molecular 
scales, and changes in density are also negligible. In this situation gases and 
liquids share a common equation of motion, the Navier-Stokes equation of 
hydrodynamics, 

0v 1 
~t I- (v- V) v = - -  Vp + v g2v (2) 

P 

where v(r, t) is the velocity field, p is the constant density, p(r, t) is the 
dynamic pressure field, and v is the kinematic viscosity of the fluid. For 
constant density, local mass conservation gives the condition 

V . v = 0  (3) 

which is statement that the flow (not the fluid) is incompressible. These 
equations must be supplemented by an appropriate boundary condition. 
For both gases and liquids this is the no-slip boundary condition that the 
relative velocity of fluid and solid vanishes at a solid surface. We take this 
boundary condition as phenomenologically given, recognizing that a full 
molecular understanding of its origin is far from trivial33) 

We cannot calculate the details of a turbulent flow directly from the 
Navier Stokes equations, but we can make two predictions. First we expect 
the fluid to be a dissipative dynamical system with a very large number of 
effective degrees of freedom. Thus, we expect chaotic behavior of some kind 
as a natural consequence of the dynamics. Second, the statistical properties 
of the velocity field should be the same if the Reynolds number is the same 
and the flow geometry is the same. We can rescale velocity U and length L 
so as to keep Re constant, or we can change from air to water with an 
appropriate change in UL so as to keep UL/v constant. 

There is considerable theoretical and experimental support for 
Reynolds number scaling in strong fluid turbulence, and for believing that 
the Navier-Stokes equations are an adequate starting point for 
understanding strongly turbulent flows. In gases, kinetic theory tells us that 
the Navier-Stokes equations should apply to motions on a scale large 
compared to a collision mean free path. The smallest turbulent eddies, 
according to the 1941 Kolmogorov theory discussed below, should be no 
smaller than about 1 mm in any laboratory or geophysical flows in air. 
This is in good agreement with experiment, and 1 mm is much larger than 
a typical mean free path in air. In water the Navier-Stokes equations 
should apply if the scales of motion are much larger than a typical 
molecular diameter. The smallest turbulent eddies observed are no smaller 
than about 0.1 mm, which is again much larger than a molecular scale. 
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Perhaps most important is that the observed statistical properties of 
turbulence, for a given flow geometry and a given Reynolds number, 
are the same in air as in water. These two fluids are very different at a 
molecular level. They share very little except the Navier-Stokes equations. 

4. W H A T  DO W E  K N O W  A P R O X I M A T E L Y ?  

Certain general properties are observed to be common to all high- 
Reynolds-number turbulent flows. For convenience we consider only those 
flows which are statistically steady. The time-averaged velocity and the 
mean square velocity fluctuations are nearly independent of Reynolds 
number for large Reynolds number. The range of turbulent "eddy sizes" r 
excited (to be defined more precisely later) is very broad, extending from a 
largest scale of the order of the external length scale L, to a smallest scale 
which must be determined from a dynamical theory. The observed ratio of 
these scales is well approximated by 

L/ t  1 = const �9 (Re) 3/4 (4) 

Equation (4) is a well-known consequence of the 1941 Kolmogorov theory, 
but for now we take it as an observed property. For an atmospheric flow 
with Re = 10 6, this implies a ratio of largest to smallest scales of about 10 4. 

The small scales of the flow, r ~ L, exhibit some degree of universality. 
They exhibit approximate statistical isotropy, and their statistical proper- 
ties, when appropriately scaled, are independent of the large-scale flow 
geometry. 

I emphasize that there are two distinct kinds of universality. The large- 
scale properties of the flow depend on geometry, but are independent of 
Reynolds number. The small-scale fluctuations depend on Reynolds 
number, but are, in a sense I will now make more precise, independent of 
flow geometry. Both of these properties suggest a certain degree of insul- 
ation of the large-scale flow properties from the small-scale fluctuations. 

5. THE 1941 K O L M O G O R O V  T H E O R Y  

To make the preceding picture quantitative, assume that energy 
cascades from large scales to small scales, that viscosity is important only 
at the smallest scales, and that the dynamics of the cascade is governed 
entirely by the average rate at which energy is being transferred. The 
average rate of energy dissipation per unit mass e plays several roles. It is 
the rate at which energy is fed into the turbulence at large scales from the 
mean flow. It is the rate at which energy is transferred from large to small 
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scales by the nonlinear terms in the Navier-Stokes equations, and it is also 
the rate at which energy is dissipated due to viscosity at small scales. 

Denoting the position in the fluid by r =  (x, y, z) and the velocity 
vector by v = (u, v, w), and assuming statistical isotropy at the scales where 
dissipation occurs, one finds that ~ is given by 

e = 15v (5) 

The derivation of Eq. (5) is given in ref. 1. The essential features are first to 
write the mean energy dissipation in an incompressible fluid in terms of the 
mean square rate of strain. Then relations for isotropic turbulence such as 

( ( a u / a y )  ~ ) = 2 ( ( a u / a x )  ~ > 

are used, and the relevant terms are collected. 
In Eq. (5) ( . )  denotes a time average over a statistically steady flow. 

Equation (5) gives the dissipation rate e in terms of directly measurable 
quantities. In terms of large-scale quantities the same quantity is given by 

= const - (U3/L) (6) 

where the constant depends on the geometry of the flow, and cannot be 
calculated without a full theory of turbulence. I make the essential 
assumption, however, that the dissipation rate is independent of viscosity 
in the limit of small viscosity. The viscosity serves only as a sink for the 
turbulent energy. The scales at which dissipation occur adjust to the value 
of the viscosity, but the amount of energy dissipated is constant. 

The length scale tt at which dissipation occurs can be calculated from 
dimensional analysis. The only length which can be formed from the 
kinematic viscosity v and the energy dissipation rate e is 

tl = (v3/e) 1/4 (7) 

This quantity is known as the Kolmogorov microscale, and Eq. (7) is a 
simple and experimentally verifiable prediction. It is equivalent to Eq. (4), 
and it works very well in practiceJ 4/ 

For high enough Reynolds numbers, there will be a range of length 
scales r satisfying 

t l ~ r ~ L  (8) 

This is known as the inertial subrange. Since r ~ L, I assume universal 
isotropic behavior independent of the flow geometry. Since r ~> ~/, I assume 
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that viscosity plays no role. I want to calculate the mean kinetic energy in 
an "eddy" of size r, defined by 

C(r)  = ( [ u ( x  + r) - u(x)] 2) (9) 

The only quantity with the dimensions of velocity which one can form 
using only e and r is (sr) ~/3, so that C(r) is given by 

C(r) = c o n s t  �9 (~;r)  2/3 (10) 

For sufficiently small r, when dissipation becomes important, the flow field 
becomes smooth, and one can evaluate Eq. (9) keeping only the first term 
in a Taylor series expansion. Using Eq. (5), one thus obtains 

C(r) = er2/15v (11 ) 

Equation (11) applies in principle only to the limited range where r is 
small compared to the dissipation scale q, but still large compared to 
molecular scales. In practice, the crossover from Eq. (10) to Eq. (11) occurs 
at distances somewhat larger than ~/. 

Equations (10) and (11) are most conveniently expressed in terms of a 
scaling form for the energy spectrum E~(k) defined by 

(u(x)  u(x + r)) = El(k) cos(kr) dk (12) 

In particular, the total kinetic energy and the total rate of energy dis- 
sipation are given, respectively, by 

(u  2) = El(k) dk, ~ = 15v El(k) k 2 dk (13) 

An essential feature of high-Reynolds-number turbulence is that the kinetic 
energy is concentrated at large scales (k ~ l/L), and that the dissipation is 
concentrated at small scales (k ~ l/r/). 

The predictions of the Kolmogorov theory are conveniently sum- 
marized in the scaling law 

E1 (k ) = ~2/3k - 5/3f(ktl ) (14) 

where thb scaling function f ( x )  is constant for small x, and decays rapidly 
for large x. A quantitative dynamical theory is required to obtain the 
scaling function. 

We have obtained Eqs. (7) and (10) by simple dimensional analysis. 
An equivalent argument can be expressed in terms of the relevant time 
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scales, and gives some elementary dynamical understanding. Let Au(r)= 
[C(r)] 1/2 be a typical velocity for an eddy of size r. Let r(r) be a 
characteristic time for energy transfer from eddies of size r to smaller scales. 
The average rate of energy transfer e is given by [Au(r)]2/r(r), and is 
independent of r when viscosity can be neglected. If we assume that the 
characteristic time r(r) is given by the eddy turnover time r/Au(r) at scale r, 
we obtain ~= [Au(r)]3/r, which is equivalent to Eq. (10). Viscosity will 
become important when the viscous diffusion time rZ/v becomes com- 
parable to the eddy turnover time r/Au(r). Using Eq. (10), this leads to 
Eq. (7). 

Equation (14) tells us nothing about the large-scale properties of the 
flow, which are nonuniversal, anisotropic, and of dominant practical 
importance. Even for the small scales, it is incomplete since it deals only at 
the level of the simple correlation function (u(x)u(x + r)). Despite this, it 
is successful in collapsing a large amount of data from a wide variety of 
flows to a single apparently universal curve. This is summarized in ref. 4. In 
the inertial range, the scaling function f(x)=f(O). The constant f (0)  is 
approximately equal to 0.5, and is known experimentally to about 10 %. 
For large values of x, the scaling function f(x) decreases in an 
approximately exponential manner, and is again universal, with variations 
of the order of 10-20 % among widely varying flows. Statistical theories of 
turbulence have had considerable success in calculating this scaling 
function, but these theories are not discussed in this paper. 

6. DIRECT N U M E R I C A L  S I M U L A T I O N  

The direct numerical simulation of high-Reynolds-number turbulence 
is unfortunately not feasible. If all scales down to the dissipation scale are 
to be resolved, the number of coupled differential equations which must be 
solved is of the order of (L/t/) 3 in three dimensions. Using the Kolmogorov 
theory, this scales as the 9/4 power of the Reynolds number. To simulate 
homogeneous turbulence for a few eddy turnover times in a few hours of 
supercomputer time, one can handle only about 10 6 differential equations. 
This limits calculations to modest Reynolds numbers. It is not feasible to 
expect direct computation of a cascade with a wide range of length scales. 

Yet direct simulation can give important insights into the dynamics of 
turbulence. If one starts with a few randomly oriented large eddies in a box 
with periodic boundary conditions, one has a reasonable starting point for 
homogeneous turbulence. For a time of the order of a large eddy turnover 
time, very little dissipation is seen. Then small-scale activity is generated, 
and the rate of energy dissipation rises to a plateau. Since the turbulence is 
not externally forced, the total kinetic energy and the dissipation rate then 
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slowly decrease, but maintain a quasi-steady state. Even the first hint of a 
"five-thirds law" is seen, but the Reynolds numbers are sufficiently small 
that no well-defined inertial range is expected. Perhaps most important, 
direct simulation can help one understand the dynamical mechanisms by 
which small scales are formed, and the possible appearance of spatial 
singularities in the solutions. 

A qualitative feature of the Kolmogorov theory is that the charac- 
teristic time r(r) decreases with decreasing scale size. We can estimate the 
total time for energy to cascade to infinite wave number in the absence of 
viscosity. Suppose that each cascade step is a factor of two in size from 
rn=2-nL to r(n+l)=r~/2. Using Eq. (10) to estimate the eddy turnover 
time tells us that the characteristic time scale at the n th cascade step is 
2 2n/3 times the large eddy turnover time (L/U). The total time to reach 
zero scale size is then some multiple of (L/U) obtained by summing the 
simple geometric series. 

The preceding argument suggests that the inviscid limit of the 
Navier-Stokes equations should develop spatial singularities in a finite 
length of time. Whether this is in fact the case remains an open question, 
both theoretically and computationally. Although the connection between 
singularities of the Euler equations and real turbulent flows is a loose one, 
the existence of singularities is of considerable fundamental interest. An 
interesting model problem, for example, is the singular behavior of two 
antiparallel vortex filaments as they approach each other. This has been 
carefully studied by Pumir and Siggia. (5~ More recent computations by 
Pumir and Kerr (6) strongly suggest, however, that severe flattening of these 
filaments occurs before any singular region is reached. This suggests that 
the important dynamics of small scales in turbulence may be dominated by 
sheets or ribbons of vorticity rather than vortex tubes. This could be 
important in dynamically understanding how vorticity is stretched to give 
the small-scale structures of high-Reynolds-number turbulence. 

Kerr (7~ has carried out a detailed statistical analysis of the vortex 
structures that occur in modest-Reynolds-number homogeneous tur- 
bulence. From pointwise statistics, he infers characteristic pancake struc- 
tures with one compressing direction and two stretching directions. The 
ratio of principal values of the rate of strain tensor in these structures is 
typically 3 : 1 : - 4 ,  adding to zero as it must for incompressible flow. The 
vorticity is found to align preferentially along the intermediate positive rate 
of strain. 

If the structures seen by Kerr are truly characteristic of small-scale 
turbulence, many interesting physical questions are raised. What is the 
dynamical mechanism by which the Navier Stokes equations lead to these 
structures? What happens at larger Reynolds numbers? Do these structures 
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fold over, break up, or in any way act as the initial step of a cascade 
process? Is there any natural mechanism by which dynamical self-similarity 
arises? Does one have to invoke a sequence of instabilities or is there some 
sort of smooth dynamical process leading to smaller and smaller scales? 

In any case the initial formation of small scales at modest Reynolds 
numbers is far from the simple picture suggested by Richardson's ditty. If 
sheetlike structures are formed, the picture of compact objects breaking up 
into smaller compact objects is qualitatively wrong. There is something 
more like a stretching and folding of ribbons, but so far we have no 
dynamical understanding of how this happens. Although I have used recent 
numerical work to pose this problem, I could have used earlier work. An 
excellent earlier reference to the essential physical problem is Kraichnan's (8) 
1974 paper. I return now to high-Reynolds-number experiments, with the 
objective of understanding the geometry of the small scales in turbulence. 

7. T H E  M U L T I F R A C T A L  S T R U C T U R E  OF T U R B U L E N C E  

The spectral content of high-Reynolds-number turbulence is well sum- 
marized by Eq. (14), but a direct examination of a velocity derivative signal 
suggests a very complicated structure for higher order correlation 
functions. Typically, u(t), the component of the velocity along the mean 
flow, is measured as a function of time at a fixed spatial point. To a good 
approximation, this can be thought of as a frozen turbulent structure 
advected past the probe at the mean speed U. This frozen turbulence 
assumption converts the signal to a representation of the velocity u(x) at a 
fixed time. This is a good approximation for the small-scale fluctuations. 

If this signal is differentiated and squared, it gives a plausible one- 
dimensional surrogate for the local dissipation, 

e (x )  = v(Ou/~x)  2 (15) 

This dissipation signal is observed to be highly intermittent, with bursts of 
intense activity alternating with inactive periods. Consider the spatial 
average of this local dissipation over an inertial range interval of length r, 

fx +r er = (I/r) g(x') dx' (16) 

The use of a one-dimensional average in Eq. (16) is strictly for experimen- 
tal convenience. A volume average would be preferable, but is difficult to 
measure. I return briefly to this point later. 

In 1962 Obukhov (9) proposed that the 1941 Kolmogorov theory 
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should be generalized to include the fluctuations in er. In particular, he 
suggested that the velocity structure functions 

Cn(r) = ( [u(x  + r) - u(x)] ~) = c o n s t  �9 <Gr n/3 } F n/3 (17) 

Equation (17) can be given a plausible physical interpretation. (1~ Assume 
that the dissipation averaged over a region of size r ~> t/exhibits the same 
statistics as the energy transfer due to the nonlinear terms. The dimensions 
of energy transfer are velocity cubed divided by length. On a scale of size r, 
the natural one-dimensional surrogate for the energy transfer is 
[ u ( x + r ) - u ( x ) ] 3 / r .  This suggests Eq. (17). If there is an underlying self- 
similarity, we expect the structure functions Cn(r) to go as some power of r, 
but this power can be modified by the fluctuations of the spatially averaged 
dissipation in Eq. (17). Thus, assume that 

Cn(r ) = const- r ~~ (18) 

where the exponents ~n remain to be determined. 
For n = 3, the average dissipation enters, and this is constant. Thus, 

Eq. (17) predicts 33 = 1. This is consistent with a firm theoretical result in 
the inertial range (see ref. 1, p. 140): 

C3(r ) = - (4/5) gr (19) 

For other values of n, the first factor in Eq. (17) depends on the statistical 
distribution of er. 

Since Eq. (19) is one of the few results which can be derived from the 
Navier-Stokes equations, it is worth outlining the essential steps in its 
derivation. One starts with an expression for the time derivative of the 
average ( v i ( x ) v j ( x + r ) )  in an unforced, slowly decaying flow. The 
Navier-Stokes equation is then used to express the time derivative, assum- 
ing homogeneity and isotropy at the small scales. This relates terms 
quadratic in velocities to terms cubic in velocities, which can be expressed 
in terms of C2(r ) and C3(r) using isotropy conditions. The only remaining 
time derivative is the rate of decrease of kinetic energy, which is the mean 
dissipation rate e. The final result is 

C3(r) = - (4 /5 )  er + 6v dCz(r)/dr (20) 

In the inertial range the viscous term can be neglected, and Eq..(19) results. 
Equation (20) dates back to Von Karman and Howarth in 1938, and is 
often called the Karman-Howar th  equation. It is an important constraint 
on any approximate theory of turbulence. 

In general we expect an infinite number of independent exponents 
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defining the scaling of different powers of the dissipation, but it is natural 
to start with the second moment 

(e 2 ) = const �9 (L/r) ~ (21) 

Using the definition in Eq. (16), one sees that there is an analogy to Brow- 
nian motion with rer as the analogue of displacement and g(x) as the 
analogue of velocity. Using this analogy, one has that the autocorrelation 
function (g(x) g(x + r)) also goes as (L/r) ~. The exponent # is perhaps the 
most direct characterization of the intermittent structure of the dissipation. 
If the Obukhov assumption is correct, Eqs. (17) and (19) can be combined 
to tell us that ~ 6 = 2 - # .  This is a prediction relating two measurable 
exponents, and is in satisfactory agreement with experiment. The most 
recent experiments (1~) suggest # = 0.25 with an uncertainty of about 10 %. 
To study other moments, however, we need to know more about the 
statistical properties of the dissipation. 

The earliest prediction was by Kolmogorov (12) himself, who suggested 
that e r should have a log normal distribution. In particular, he predicted 
that 

n # n ( 3  - n )  
~. = ~ +  ~ (22) 

In particular, for n = 2, ~2 ~---2/3 +/z/9, and the energy spectrum goes as 
k Y, with 7 = 5/3 + #/9. 

In 1974, Kraichnan (sl discussed the physics of the 1962 Kolmogorov 
theory, and Mandelbrot (13) introduced a geometrical interpretation of the 
intermittency of the turbulent dissipation. In the simplest case the dis- 
sipation is concentrated on a homogeneous fractal of dimension D = 3 -  #. 
In this case the correction to the 5/3 law for the spectrum is 7 = 5/3 + #/3. 
This special case of fractally homogeneous turbulence was physically inter- 
preted by Frisch eta/. (14) and is frequently called the/?-model. It has been 
known for at least a decade that both the log normal and fl-models are 
oversimplifications, and that the general multifractal formalism introduced 
by Mandelbrot is needed to account for all of the data. This formalism has 
now become quite fashionable for a variety of problems, and I follow the 
notation of some of the more recent work. 

I introduce the generalized dimensions (Is) Dq. Let Er be the total 
dissipation in a box of size r. I define Dq by summing this over all boxes 
and assuming 

Eqr~r(q 1)Dq (23) 
boxes 
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where r is in the inertial range. Meneveau and Sreenivasan (16) have found 
that the curve of Oq v e r s u s  q is nearly the same for a wide variety of 
turbulent flows, including a wind tunnel boundary layer, the turbulent flow 
behind a grid, the turbulent wake behind a cylinder, and the surface layer 
of the atmosphere. They also found (17) that all of the data can be fit by a 
remarkably simple formula, 

Dq = (1 q ) - '  log2[p q + (1 - p)q] (24) 

where p is a single free parameter. Assuming Eq. (24), the parameter  p is 
quite accurately determined to be p = 0.7. The resulting Dq c u r v e  is nearly 
in agreement with the Kolmogorov log normal model for small q, but D u 
approaches a constant for large q, as in the /Y-model. Their fit to the 
averaged data is shown in Fig. 1. 

Equation (24) has a simple interpretation in terms of a two-scale Cantor  
set. Suppose that at each cascade step, one eddy of size r forms eight 
daughter eddies of size r/2. Suppose further that the amount  of energy 
delivered to each daughter eddy is either p or 1 - p  at random, and assume 
that this process repeats indefinitely. After n cascade steps, the sum over 
boxes in Eq. (23) is a sum over a binomial distribution, and gives Eq. (24). 

Dq 

2 

0 
-30 

\\ 

\ 

! I I | ! 

-20 -10 0 10 20 30 
q 

Fig. 1. The generalized dimensions for one-dimensional sections through the dissipation field 
in several fully developed turbulent flows. The symbols correspond to the experimental mean 
(which is independent of the type of flow within experimental accuracy), and the solid curve 
to Eq. (24) with p =0.7. The dashed line corresponds to Kolmogorov's 1962 log normal 
model, and the horizontal dot-dashed line to the fl-model, both for # = 0.25. This is Fig. 1 of 
ref. 17. 
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The multifractal formalism can be carried further using the now 
familiar f (c0  curve, (18) but this is not useful here. I prefer to mention briefly 
the limitations of the formalism when applied to real data, and finally to 
suggest the physical challenge of the results. One important limitation is 
the restriction to one component of the velocity derivative tensor as a 
surrogate for the dissipation. Siggia (19) has shown that, for isotropic tur- 
bulence, there are four invariants which can be formed of fourth order in 
the velocity derivative tensor ~?vi/Oxj. These invariants can be expressed in 
terms of the vorticity and rate of strain, and given some physical inter- 
pretation. At low Reynolds numbers, Kerr (2~ has found that different 
invariants scale quite differently with Reynolds number. At high enough 
Reynolds numbers, it seems reasonable that all components should scale in 
the same way, since the most rapidly growing invariant should dominate. It 
would not be surprising, however, if the necessary Reynolds numbers were 
very high, even by geophysical standards. A second limitation is the use of 
a one-dimensional cut through the multifractal structure. Recently Prasad 
et al. ~21~ have made a two-dimensional cut through the dissipation of a 
passive scalar, and have studied two different components of the scalar 
derivative. They found that the two-dimensional cut reduced the fluc- 
tuations in the observed Dq, but that the averaged results from a one- 
dimensional cut with a single component were not essentially changed. 
Finally, the corrections to the frozen turbulence assumption are not 
known, and we do not know how accurate is the original Obukhov 
assumption. With all of these qualifications, I am inclined to accept the Dq 
curve of Eq. (24) as a reasonable approximation to a universal multifractal 
structure for the small scales of turbulence. 

Finally, what is the physics? Independent of the simple model, the Oq 
curve tends to a constant value of about 0.5 rather quickly as q increases. 
This indicates that the ratio of the dissipation on scale r/2 to the dis- 
sipation on scale r has a robust upper bound. This of course depends on 
the reliability of measurements of high moments of the dissipation. If true, 
however, it has strong implications for the dynamics of forming small 
scales in turbulence. With the simple model of Eq. (24), this upper bound is 
the only free parameter. The two-scale Cantor set is undoubtedly an over- 
simplification, as is the assumption of a factor of 2 change in scale size. 
Despite all these caveats, I suspect that the essential features of this simple 
model are telling us something quite basic about the dynamics of 
turbulence. We are, a long way from understanding this type of question 
directly from the Navier-Stokes equations. My own temptation is to 
introduce dynamical models at an intermediate level of complexity, and to 
see if any of these models can exhibit solutions in agreement with the 
observed structure of the small scales in high-Reynolds-number turbulence. 
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To summarize, I have suggested that fully developed turbulence is 
contained within the Navier-Stokes equations. I have reviewed the strong 
phenomenological evidence for the 1941 Kolmogorov theory. ! have briefly 
examined direct numerical simulations, with an emphasis on possible 
mechanisms by which small scales are created, and have suggested that 
ribbons of vorticity are formed. I then returned to the experiments on the 
multifractal structure of the dissipation at high Reynolds number, and 
suggested that the phenomenological evidence for some kind of dynamical 
self-similarity is quite strong. I emphasized, however, that we have made no 
theoretical progress in obtaining such self-similarity from the underlying 
Navier-Stokes equations. Without the help of experiment, we would have 
little hint that it is there. 

After finishing this paper, I became aware of another recent review ~22~ 
which partially overlaps this one. The subjects covered, and the points of 
view expressed, are somewhat different, but represent an overall view of 
fully developed turbulence which is broadly similar. Both papers com- 
pletely ignore one important aspect of turbulence theory, namely the 
statistical theories which have as their goal to obtain and solve equations 
for statistical quantities such as the energy spectrum. For a discussion of 
the fundamental theoretical problems involved in these theories, see the 
1977 paper by Kraichnan. ~23~ For recent interesting applications, see the 
work of Dannevik eta/. (24) The spirit of these applications is to assume self- 
similarity and the 5/3 law of the 1941 Kolmogorov theory, and then to 
calculate the scaling function of Eq. (14) as well as other low-order 
statistical averages over turbulent fluctuations. This is a very different point 
of view than taken in the present paper. 
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